ジェイムズ・ウェッブ宇宙望遠鏡
ファースト・スター発見への夢
宇宙は今でも光よりも速い速度で広がっています。「アインシュタインの相対性理論があるんだから光より速いものはないはずでは?」そんな声が聞こえてきそうで、それはそうなのですが、空間が広がる速度はその法則が適用されません。現に誕生から138憶年と言われている私たちの宇宙ですが、既に半径450億光年の広がりをみせています。
私たちの体は星のかけら、つまり恒星の核融合によって生まれた元素、あるいは超新星爆発や、かつて連星であった中性子星同士の衝突によって生まれた重い元素でできています。
ビックバンで産声を上げた宇宙は、数十万年の混沌とした状態を経て落ち着き始めました。そして原子核が電子を捕らえ、水素やヘリウムを作り始めます。これを宇宙の晴れ上がりと呼んでいます。
それから間もなくして、物質とダークマターの重力の力で最初の恒星が誕生しました。この恒星は「ファースト・スター」と呼ばれており、この恒星こそ、私たちのルーツと言えるのです。もちろん私たちの母なる大地である地球のルーツでもあり、生命の源である太陽のルーツでもあります。
望遠鏡で遠くを見ることで、宇宙の過去を覗くことができます。宇宙は光の速度さえも遅く感じるほど広大ですから、光が地球に届くまで多くの時間がかかるからです。あなたが今日浴びた太陽の光は8分20秒前の光ですし、例えば10億光年先にある恒星が放った光は10億年かかって地球にたどり着くのですから、地球で観測した時は10憶年前の光になっているということになります。ですから、遠くを覗き込めば覗き込むほどに、私たちは過去を覗き込んでいることになります。なにか不思議な感じがしますよね。
ドップラー効果というものをご存知でしょうか。救急車のあれですね、ピーポーの音程が近づくときには高く、遠ざかるときには低く聞こえる現象です。遠くの中華屋さんに頼んだ出前のラーメンが到着した時には麺が延びている、といったことではありません。冗談はさておき、光にも同じ現象が起きます。それを赤方偏移と呼びます。
冒頭でお話したとおり、宇宙はダークエネルギーの力で空間が膨張しています。空間を飛んでいる光の波長もその作用で膨張、光の場合は膨張とは言わず波長が伸びると言いますが、そのような作用で光は、ここで言う光とは可視光線の事ですが、その波長が伸びて赤外線になります。それが赤方偏移です。光の発生源が遠ければ遠いほどに赤方偏移の度合いが強くなります。
つまり、遠くの恒星が発した光を見るためには、可視光線を捉える通常の望遠鏡ではなく、赤外線カメラを使えばよいということになります。赤外線とは温度そのもののことで、太陽の光が暖かく感じるのは目に見える可視光線の作用ではなく、それよりも波長の長い赤外線が飛んでくるからなのですが、赤外線を捉えようとするとき、捉えるために用意した赤外線カメラよりも温度の低い赤外線を捉えることができません。「なんで?」と思うかもしれませんが、そういうものらしいのです。
現在稼働しているハッブル宇宙望遠鏡もかつての修理ミッションで近赤外線を捉えられるようバージョンアップが図られたのですが、下げられる温度には限界があり、「ファースト・スター」の光を捉えるには至りませんでした。ジェイムズ・ウェッブ宇宙望遠鏡は極低温にすることができる設計になっているので、念願の、私たちのルーツである「ファースト・スター」の初観測に期待が寄せられているのです。
そのジェイムズ・ウェッブ宇宙望遠鏡、度重なる延期を経て、ついに今年2021年12月18日に打ち上げが決定しました。さあみなさん、私たちのルーツを探る冒険が始まりますよ。